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Abstract

By extending the work in [4] we design an energy stable finite
difference scheme for the two-layer shallow water equations.

1 Introduction

The two-layer shallow water equations model the flow of two fluids of
different densities, superimposed on each other, under the influence of
gravity. The main assumption in the derivation is that the horizontal
length scales are much bigger than the vertical scales, and that one can
therefore neglect variations in depth of density and velocity.Furthermore,
it is assumed that no mixing occurs between the fluids. In one spatial
dimension the equations have the form

(h1)t + (h1u1)x = 0, (h2)t + (h2u2)x = 0,

(h1u1)t +

(
1

2
gh2

1 + h1u
2
1

)
= −gh1 (b+ rh2)x ,

(h2u2)t +

(
1

2
gh2

2 + h2u
2
2

)
= −gh2 (b+ h1)x ,

(1.1)

where subscripts 1 and 2 denote the lower and upper layers, respectively,
b = b(x) is the bottom topography, h is the layer height, u is layer
velocity, r := ρ2

ρ1
< 1 and ρ is the layer density, with ρ1 > ρ2. In this

equation, mass (h1 and h2) and total momentum (ρ1h1u1 + ρ2h2u2) are
the conserved variables. (1.1) is a balance law, which in general has the
form

ut + f(ux) = s(u,ux, x).

The system (1.1) is equipped with an entropy pair, the energy of the
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solution:

η =
1

2

(
ρ1

(
h1u

2
1 + gh2

1

)
+ ρ2

(
h2u

2
2 + gh2

2

))
+ gρ1h1b+ gρ2h2(h1 + b)

q =
2∑

i=1

ρi

(
1

2
hiu

3
i + ghiui(hi + b)

)
+ gρ2h1h2(u1 + u2).

(1.2)

The relevant entropy condition for (1.1) is therefore

η(u)t + q(u)x ≤ 0. (1.3)

The two-layer shallow water equations entails several difficult prob-
lems:

• The right-hand side products (e.g. h1∂xh2) are undefined at dis-
continuities, as we get the product of a distribution (h1) with a
measure (∂xh2), a nonconservative product. The theoretical frame-
work for nonconservative products was set by DalMaso, LeFloch
and Murat in [3], and numerical methods (so-called path-conservative
schemes) have been developed to fit into this framework. However,
as has been recently reported [1], such schemes may not converge
to the correct weak solution.

• As (1.1) is a 4-by-4 system, a direct calculation of its eigenvalues
can be hard. However, a first-order approximation in u2 − u1 was
found in [2] to be

λ±
int = Uc ±

√

g′
h1h2

h1 + h2

(
1− (u2 − u1)2

g′(h1 + h2)

)
,

λ±
ext = Um ±

√
g(h1 + h2),

(1.4)

where Uc := h1u2+h2u1
h1+h2

, Um := h1u1+h2u2
h1+h2

, g′ := g(1 − r). From
this we see that the system is only hyperbolic in the regime

(u2 − u1)2

g′(h1 + h2)
≤ 1.

This loss of hyperbolicity can be linked with Kevin-Helmholtz in-
stabilities – violent mixing that occurs when the relative difference
in velocities between the two layers becomes too large.
From the above approximation of eigenvalues we also get a bound
on the wave speeds of the system (1.1):

|λ| ≤| Um|+
√
g(h1 + h2).

This will be useful when determining CFL conditions and adding
diffusion in numerical computations.
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• It is easily seen that (1.1) has the steady state

u1, u2 ≡ 0, b+ h1 ≡ const, h2 ≡ const. (1.5)

This is the so-called lake at rest steady state. A major challenge in
numerical schemes for shallow water models is the preservation of
the lake at rest. Its importance is evident in the modelling of lakes
and oceans, where the flows of interest are small perturbations of
the lake at rest.

1.1 Numerical methods

We consider finite difference schemes to solve (1.1). Our spatial domain
is partitioned into a uniform grid {xj}j with xj+1 − xj ≡ ∆x, and we
solve for the point values uj(t) ≈ u(xj , t). The general form of a finite
difference scheme for (1.1) is then

d

dt
uj +

1

∆x

(
Fj+1/2 − Fj−1/2

)
= Sj , (1.6)

where we suppress the t-dependence of uj for notational convenience.
Temporal integration is performed with the explicit Euler method for
first-order schemes and strong stability preserving Runge Kutta method
for second-order schemes.

Our main goal in this paper is to design a finite difference scheme
that satisfies a discrete entropy inequality

d

dt
η(uj) +

1

∆x

(
Qj+1/2 −Qj−1/2

)
≤ 0. (1.7)

for some numerical entropy flux Qj+1/2 = Q(uj ,uj+1) that is consistent
with the entropy flux q. Such a scheme will be called energy stable
after the work of Tadmor [6]. To this end, we first construct an entropy
conservative scheme – one which satisfies

d

dt
η(uj) +

1

∆x

(
Q̂j+1/2 − Q̂j−1/2

)
= 0, (1.8)

and then add a numerical diffusion operator to obtain entropy stability.
Define the entropy variables as v(u) := ∇η(u) and the entropy potential
as ψ(u) := v(u)#f(u)−q(u). For the two-layer shallow water equations,
the entropy variables are

V =





ρ1
(
g(h1 + rh2 + b)− u2

1
2

)

ρ2
(
g(h1 + h2 + b)− u2

2
2

)

ρ1u1

ρ2u2




. (1.9)
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It was shown in [6] that a scheme

d

dt
uj +

1

∆x

(
Fj+1/2 − Fj−1/2

)
= 0 (1.10)

is entropy conservative if its numerical flux Fj+1/2 satisfies

[[v]]#j+1/2Fj+1/2 = [[ψ]]j+1/2,

where [[x]]j+1/2 := xj+1 − xj . Moreover, it was shown that if a numerical
flux function F can be written as Fj+1/2 = F∗

j+1/2 − Dj+1/2[[v]]j+1/2 for
an entropy conservative flux F∗ and a positive definite diffusion matrix
Dj+1/2, then the resulting scheme is entropy stable. Using these results,
the authors designed energy conservative and energy stable schemes for
the shallow water equations in [4]. (The entropy used is the total energy
of the solution, hence the word “energy”.) A consistent discretization
of the bottom topography source term in [5] led to energy conservative
and energy stable, well-balanced methods for the shallow water equations
with variable bottom topography.

2 The EEC scheme

It turns out that the generalization from the setting of [5] to the two-
layer shallow water equations is more or less trivial. Without going into
details we give the spatial discretization and refer to [4, 5] for further
information:

F∗
j+1/2 =





h1u1

h2u2
1
2gh

2
1 + h1u1

2

1
2gh

2
2 + h2u2

2





j+1/2

,

Sj = − g

2∆x





0
0

(h1)j+1/2[[b+ rh2]]j+1/2 + (h1)j−1/2[[b+ rh2]]j−1/2

(h2)j+1/2[[b+ h1]]j+1/2 + (h2)j−1/2[[b+ h1]]j−1/2



 ,

(2.1)

where we use the notation xj+1/2 := xj+xj+1

2 . We denote the scheme
(1.6), (2.1) the EEC (Explicit Energy Conservative) scheme.

Theorem 2.1. The EEC scheme is consistent, second-order accurate
and energy conservative – solutions {uj}j satisfy the discrete entropy
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equality (1.8) with

Q̂j+1/2 =
2∑

i=1

ρi

(
1

2
(hi)j+1/2(ui)j+1/2(ui)j(ui)j+1

+ g(hi)j+1/2

(
(ui)j(hi + b)j+1 + (ui)j+1(hi + b)j

2

))

+ ρ2g

(
(h1)j+1/2

(
(u1)j(h2)j+1 + (u1)j+1(h2)j

2

)

+ (h2)j+1/2

(
(u2)j(h1)j+1 + (u2)j+1(h1)j

2

))

(compare to (1.2)). Furthermore, it is well-balanced – given initial data
satisfying (1.5), the computed solution is constant in time.

Proof. Consistency and order of accuracy is straight-forward to check.
For entropy conservation, we take the inner product of (1.6) with v(uj)
(see (1.9)) and obtain (1.8). Last, if the solution at some point of time
satisfies the lake at rest conditions (1.5), then the two first components of
the flux and source in (1.6) drop out immediately, and the third reduces
to

(h2
1)j+1/2 − (h2

1)j−1/2 + (h1)j+1/2[[b+ rh2]]j+1/2 + (h1)j−1/2[[b+ rh2]]j−1/2

=
[[h2

1]]j+1/2 + [[h2
1]]j−1/2

2
+ (h1)j+1/2[[b+ rh2]]j+1/2 + (h1)j−1/2[[b+ rh2]]j−1/2

= (h1)j+1/2[[b+ h1 + rh2]]j+1/2 + (h1)j−1/2[[b+ h1 + rh2]]j−1/2

= 0

by (1.5). An analogous argument holds for the fourth component. Thus,
we end up with d

dtuj = 0, whence uj(t) ≡ constant for all j.

2.1 Numerical experiments

We test the EEC scheme on a problem taken from [2]. The bottom
topography is set to be

b(x) =

{
(cos (10π(x− 0.5)) + 1) /5 if |x− 0.5| ≤ 0.1

0 otherwise.

The initial data is the lake at rest data u1, u2 ≡ 0, h1 + b(x) ≡ 0.5,
h2 ≡ 0.1. We discretize the domain [0, 1] into 100 grid cells and compute
up to t = 1. We set g = 1, ρ1 = 1 and ρ2 = 0.9 in this and the remaining
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(a) Lake at rest
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(b) Lake at rest with perturbation

Figure 2.1: Lake at rest computed with the EEC scheme

experiments. As can be seen in Figure 2.1(a), there is no unphysical
generation of spurious waves, and hence the initial lake at rest data is
preserved.

Figure 2.1(b) shows the same experiment at t = 0.4, but with a small
initial perturbation of +0.05 in h2 in the range x ∈ [0.38, 0.42]. The two
resulting shock waves are resolved, but in-between there are unphysical
oscillations that are due to a lack of numerical diffusion. To fix this we
will add numerical diffusion to obtain an energy stable scheme.

3 The ERus scheme

To obtain energy decay near discontinuities we add a Rusanov-type nu-
merical diffusion operator of the form cj+1/2[[u]]j+1/2 to the numerical
flux, where cj+1/2 is some approximation of the largest eigenvalues of
the system. Assume for the moment that the bottom topography is flat,
b ≡ 0. As the energy η is strictly convex, the mapping u '→ v(u) is
injective, and so the change-of-variables matrix ∂vu(v) is well-defined
and positive definite. By the mean value theorem there is a state vj+1/2

such that
[[u]]j+1/2 = ∂vu(vj+1/2)[[v]]j+1/2. (3.1)

This is the form of our numerical diffusion operator, and we define the
ERus (Energy stable Rusanov) flux to be

Fj+1/2 = F∗
j+1/2 −

1

2
cj+1/2∂vu(vj+1/2)[[v]]j+1/2, (3.2)

where F∗ is the EEC flux (2.1). In the more general case b )= 0 we still use
the above expression, although the identity (3.1) no longer holds since v,
unlike u, depends explicitly on b. We set the diffusion coefficient cj+1/2

to be
cj+1/2 = max (cj , cj+1) ,
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where cj := |(Um)j |+
√

g((h1)j + (h2)j) (see (1.4)).

Theorem 3.1. The ERus scheme is consistent, first-order accurate and
energy stable – solutions {uj}j satisfy (1.7) with Qj+1/2 = Q̂j+1/2 −
1
2v

#
j+1/2Dj+1/2[[v]]j+1/2 and Dj+1/2 := 1

2cj+1/2∂vu(vj+1/2). Furthermore,
it is well-balanced – given initial data satisfying (1.5), the computed so-
lution is constant in time.

Proof. First-order accuracy comes from the O(∆x) term [[v]]j+1/2. The
proof of the discrete entropy inequality follows [6, Theorem 5.2]: Multi-
ply the ERus scheme (1.6) by v#

j , use the entropy conservativity of the
EEC flux F∗ and rearrange the diffusion terms to obtain (??).

For well-balancedness, we note that when the solution satisfies (1.5),
the entropy variables (1.9) are constant in space. Hence, the ERus flux
reduces to the EEC flux, which we have already shown is well-balanced.

3.1 Numerical experiments

We repeat the numerical experiments from the previous section with the
ERus scheme. The lake at rest is preserved exactly; even after long-time
simulations the relative error stays within 10−16. Figure 3.1(a) shows the
perturbed lake at rest experiment. Clearly, the unphysical oscillations
of the EEC scheme are gone.

Figure 3.2 shows computed h1 and u1 on a problem from [2]. The
results compare well to those of [2].
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(a) 100 grid points.
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(b) 1000 grid points.

Figure 3.1: Perturbed lake at rest computed with the ERus scheme.
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Figure 3.2: Problem from [2]. h1 to the left, u1 to the right. Top row
with 500 grid points, bottom row with 10000.
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